Tuesday, December 30, 2008
Monday, December 29, 2008
Monday's WOD
For time:
400m Run
50 Squats
400m Run
40 Sit-ups
400m Run
30 Push-ups
400m Run
20m Wall-Balls
400m Run
10 Burpees
400m Run
50 Squats
400m Run
40 Sit-ups
400m Run
30 Push-ups
400m Run
20m Wall-Balls
400m Run
10 Burpees
Sunday, December 28, 2008
Low Carb wins again
From Conditioning Reseach.com http://conditioningresearch.blogspot.com/2008/12/low-carb-wins-again.html
Low Carb wins again
The effect of a low-carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2 diabetes mellitus.
OBJECTIVE: Dietary carbohydrate is the major determinant of postprandial glucose levels, and several clinical studies have shown that low-carbohydrate diets improve glycemic control. In this study, we tested the hypothesis that a diet lower in carbohydrate would lead to greater improvement in glycemic control over a 24-week period in patients with obesity and type 2 diabetes mellitus. Research design and methods: Eighty-four community volunteers with obesity and type 2 diabetes were randomized to either a low-carbohydrate, ketogenic diet (<20 g of carbohydrate daily; LCKD) or a low-glycemic, reduced-calorie diet (500 kcal/day deficit from weight maintenance diet; LGID). Both groups received group meetings, nutritional supplementation, and an exercise recommendation. The main outcome was glycemic control, measured by hemoglobin A1c.
RESULTS: Forty-nine (58.3%) participants completed the study. Both interventions led to improvements in hemoglobin A1c, fasting glucose, fasting insulin, and weight loss. The LCKD group had greater improvements in hemoglobin A1c (-1.5% vs. -0.5%, p=0.03), body weight (-11.1 kg vs. -6.9 kg, p=0.008), and high density lipoprotein cholesterol (+5.6 mg/dL vs. 0 mg/dL, p<0.001) compared to the LGID group. Diabetes medications were reduced or eliminated in 95.2% of LCKD vs. 62% of LGID participants (p<0.01).
CONCLUSIONS: Dietary modification led to improvements in glycemic control and medication reduction/elimination in motivated volunteers with type 2 diabetes. The diet lower in carbohydrate led to greater improvements in glycemic control, and more frequent medication reduction/elimination than the low glycemic index diet. Lifestyle modification using low carbohydrate interventions is effective for improving and reversing type 2 diabetes.
Low Carb wins again
The effect of a low-carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2 diabetes mellitus.
OBJECTIVE: Dietary carbohydrate is the major determinant of postprandial glucose levels, and several clinical studies have shown that low-carbohydrate diets improve glycemic control. In this study, we tested the hypothesis that a diet lower in carbohydrate would lead to greater improvement in glycemic control over a 24-week period in patients with obesity and type 2 diabetes mellitus. Research design and methods: Eighty-four community volunteers with obesity and type 2 diabetes were randomized to either a low-carbohydrate, ketogenic diet (<20 g of carbohydrate daily; LCKD) or a low-glycemic, reduced-calorie diet (500 kcal/day deficit from weight maintenance diet; LGID). Both groups received group meetings, nutritional supplementation, and an exercise recommendation. The main outcome was glycemic control, measured by hemoglobin A1c.
RESULTS: Forty-nine (58.3%) participants completed the study. Both interventions led to improvements in hemoglobin A1c, fasting glucose, fasting insulin, and weight loss. The LCKD group had greater improvements in hemoglobin A1c (-1.5% vs. -0.5%, p=0.03), body weight (-11.1 kg vs. -6.9 kg, p=0.008), and high density lipoprotein cholesterol (+5.6 mg/dL vs. 0 mg/dL, p<0.001) compared to the LGID group. Diabetes medications were reduced or eliminated in 95.2% of LCKD vs. 62% of LGID participants (p<0.01).
CONCLUSIONS: Dietary modification led to improvements in glycemic control and medication reduction/elimination in motivated volunteers with type 2 diabetes. The diet lower in carbohydrate led to greater improvements in glycemic control, and more frequent medication reduction/elimination than the low glycemic index diet. Lifestyle modification using low carbohydrate interventions is effective for improving and reversing type 2 diabetes.
Wednesday, December 24, 2008
Tuesday, December 23, 2008
Get Some Sleep!
Sleep prevents you from trudging through life like a mindless drone; but did you know a good night’s sleep is also key for maintaining the proper weight? There’s a very significant relationship between sleep and obesity.
Researchers at the University of Chicago restricted a group of healthy men and women to four hours of sleep a night. After six days the subjects’ metabolisms and hormone levels were so out of whack that their bodies had a hard time processing glucose in the blood – a problem common in overweight diabetics (this is seen in higher upper back and love handle body fat scores for the general population as well). In a follow-up study, the researchers examined "normal " sleepers as well as a second group of people who slept fewer than six hours a night. The sleep deprived group needed to produce 30 percent more insulin to process their food, a trait that predisposes people to weight gain and increases the risk of obesity over time. (along with this, hyperinsulinemia is a MAJOR player in peoples self esteem, mental acuity and just plain old day to day energy - VERY impt to control this!!!)
Study after study has shown that sleep deprivation can disrupt your metabolism, wreaking havoc on the body’s ability to maintain a healthy weight. Why? Fat cells produce a hormone called leptin, which helps the body keep track of how much potential energy (i.e., fat) it has stored. Leptin production peaks when you’re asleep, and that spike can be interrupted if you deprive yourself of sleep. This leaves your body with an unreliable measurement of how much energy it has in reserve and ultimately causes it to end up storing calories rather than burning them.
Another drawback from not sleeping enough? It’s easy to confuse feelings of fatigue with feelings of hunger, so you end up eating when you’re really just tired. Shoot for the ideal of eight hours a night. Depending on you’re body, you may ultimately need even more; preferably in a VERY dark room out of sight of the alarm clock.
My empirical data agrees as well with what alternative medicine practitioners have seen before, that sleeping more hours BEFORE midnight accounts for more recovery sleep than hours after - that is - a general consensus from clients I ask about this would be that if they sleep from midnight till 8 am, they are not as well recovered or show as much insulin control as those who sleep from 9 pm till 5 am...both 8 hours but much different in recovery and energy balance.
If you're wired and tired at night - it could be from working out too late in day, consuming caffeine too late in day, eating too many grains and sugars at supper or late snack or just plain anxiety about something...the first few parts can be taken care of..with respect to anxiety...WRITE IT DOWN...journalling has worked well for a lot of folks to get things out of mind.
Play with foods later in PM as well to see how you sleep and track it...some have found that higher amounts of fats and protein later are fine for sleep....I recommend full fat organic dairy and berries to those who can handle dairy fine as later snacks and this seems to help a lot - its the milk protein and low sugars creating a nice slow digestion as well as some serotonin like effects that does the trick...for others, play with things EXCEPT grains and see how you do...sidenote...on personal observation - a large DQ blizzard does not work for that milk protein thing - it only causes waking at 2 am wondering if you're having a heart attack.
Sunday, December 21, 2008
Thursday, December 18, 2008
Friday's WOD
AMRAP (as many rounds as possible) in 20 minutes of:
15 x Wall Ball Men 20#, Women 14#
30 x Sit Ups
15 x Push Ups
15 x Wall Ball Men 20#, Women 14#
30 x Sit Ups
15 x Push Ups
Wednesday, December 17, 2008
Wednesday's WOD
3 rounds for time of:
20 SDHP (sumo deadlift high pull) men: 45# / women: 25#
40 push press (men: 45# / women 25#)
60 squats
20 SDHP (sumo deadlift high pull) men: 45# / women: 25#
40 push press (men: 45# / women 25#)
60 squats
Sunday, December 14, 2008
Monday's WOD
Let's start the week off right with a nice easy WOD!
5 rounds for time of:
run 400
20 wall ball shots (men 20# / women 14#)
10 kettlebell swings (men 1.5 pood / women 1 pood)
5 rounds for time of:
run 400
20 wall ball shots (men 20# / women 14#)
10 kettlebell swings (men 1.5 pood / women 1 pood)
Thursday, December 11, 2008
Skills Day!
Friday will be a break from the METCONs. We'll works some gymnastic skills like the handstand push-up and its variations and some plain handstands. Don't worry, you'll still get a work out!
Wednesday, December 10, 2008
Ladies Tank Tops
Tuesday, December 9, 2008
CrossFit is dangerous but so are rocks!
Sunday, December 7, 2008
Thursday, December 4, 2008
Wednesday, December 3, 2008
Aftermath
This is a great post from Robb Wolf, CrossFit's resident nutrion guru. Check out his blog; the link is down on the left un the "Nutrition" section. Robb is currently working on a book and I expect it will become the nutrion bible for CrossFitters and anyone serious about their health and performance.
________________________________________________
We had an interesting consensus amongst most of our clients today: “I Feel Like Shit”. These folks have been eating a clean, paleo-esque diet for anywhere from one to several months and have been feeling and performing great. Then Thanksgiving happened.
These folks added in a a bunch of wheat in the form of bread and stuffing, mashed potatoes, deserts of every imaginable variety...a goodly bit of booze (makes dealing with family easier...so I’ve heard) and today was pretty damn rough. It’s an interesting lesson because these folks were not sick on their previous food of good protein, fats, fruits and veggies. They feel like hell from the good-ol grains and carbs the food pyramid is built on. Interesting, no? Here were the common complaints:
Poor sleep
High insulin levels from huge, carb laden meals cause a release in cortisol. This stress hormone disturbs sleep and begins a whole downward spiral of poor sleep, increased insulin resistance and typically more carb consumption. Here is a little more info on that topic. I do not agree with everything they have to say on the topic, but it’s pretty solid.
Pain/Inflammation
Our pain and inflammation are regulated, in large part, through a system of hormone controllers called the prostaglandins. You hear about these ever so often when a drug like Viox, which is used to regulate pain and inflammation, is found to do a silly thing like kill people. The problem is we can’t patent a low carb diet, sleep and fish oil. So drug companies and an ignorant populace continue to do a an exchange of goods and services that are...not so healthy. Folks coming in to train today reported a LOT of joint pain, lethargy and stiffness. Well, high insulin levels up-regulates the pathways which increases our pain and inflammation. Here is a look at this from the perspective of arterial degeneration and here is a look at the whole spectrum of the inflammatory process. Fascinating that our CSU Nutrition Department still recommends a high glycemic load diet, no?
So, now that we are in the midst of the Holiday season I’m going to provide some video links every few days on some recurring themes related to nutrition. This first one is from author Gary Taubes. Gary has received several Excellence in Science awards and recently wrote the ridiculously thorough exploration of nutrition in the book Good Calories, Bad Calories.
Tuesday, December 2, 2008
Wednesday WOD
Wednesday's class is going to teach Overhead Lifts.
The WOD is 21-15-9 Box Jumps, Thrusters & Burpees
The WOD is 21-15-9 Box Jumps, Thrusters & Burpees
Monday, December 1, 2008
What Are Advanced Glycation End Products?
This is a great post from Scott Kustes at
The bottom-line is AGEs are BAD; they wreak havoc at the cellular level and you want to avoid them. The good news is, you can do wonders to prevent them through proper nutrition. Note we did not say diet because a diet is a temporary thing and what we espouse at CCF-FH is proper nutrition and eating habits - PERMANENT changes for the better of your health and performance.
What Are AGEs?
AGEs are the end-products of glycation reactions, in which a sugar molecule bonds to either a protein or lipid molecule without an enzyme to control the reaction. A similar reaction, known as glycosylation, uses an enzyme to control the reaction, targeting specific receptor sites on cells. Glycation, on the other hand, “is a haphazard process that impairs the functioning of biomolecules”.
Where Do AGEs Come From?
Advanced Glycation End products can come from two sources: the food we eat and internal production in the body. Let’s look at each of them.
AGE Formation In Food
When proteins are cooked with sugars in the absense of water, AGEs are formed. Water, however, prevents these sugars from binding to the protein molecules. Now, I know what you’re thinking when you hear the word “protein”: flesh. I was too, until I got to reading. However, grains, vegetables, fruits, and such all have protein in them as well, with browning being an indication of AGEs:
According to these new findings, brown foods, such as brown cookies, brown bread crust, brown basted meats and brown beans, and even brown coffee beans may increase nerve damage, particularly in diabetics who are unusually susceptible to nerve damage.
These are the very reactions that give certain foods their flavors after cooking. Food-borne AGEs are absorbed with about 30% efficiency when ingested.
AGE Formation In The Body
Once you’ve eaten, the body can still glycate the simple sugars in your food. A small proportion of the sugar in your bloodstream is glycated, while the rest goes to running your metabolic machinery. Consider what happens in the bloodstream of a diabetic with chronically elevated blood sugar. There are many opportunities for this circulating sugar to be glycated, which helps explain why diabetics have such high incidences of the issues discussed in the next section.
Fructose and galactose undergo glycation at about 10 times the rate as does glucose. Considering the dramatic increase in sugar consumption over the past several decades, and the subsequent increase in fructose consumption (recall that most sweeteners are approximately 50% fructose), is there any question why we’re seeing rising rates of heart disease, arthritis, and other inflammatory “diseases of aging”?
What Do AGEs Do In The Body?
The body is able to handle AGEs, though very slowly. The half-life of AGEs is about double that of the average cell life, meaning that damage can persist for quite some time, especially in long-lived cells like nerve and brain cells, eye and collagen proteins, and DNA. Not good!
Here’s a run-down of a few effects of AGEs:
…and are implicated in many age-related chronic diseases such as: type II diabetes mellitus (beta cell damage), cardiovascular diseases (the endothelium, fibrinogen, and collagen are damaged), Alzheimer’s disease (amyloid proteins are side-products of the reactions progressing to AGEs), cancer (acrylamide and other side-products are released), peripheral neuropathy (the myelin is attacked), and other sensory losses such as deafness (due to demyelination) and blindness (mostly due to microvascular damage in the retina).
….
The endothelial cells of the blood vessels are damaged directly by glycations, which are implicated in atherosclerosis, for example. Atherosclerotic plaque tends to accumulate at areas of high blood flow (such as the entrance to the coronary arteries) due to the increased presentation of sugar molecules, glycations and glycation end-products at these points. Damage by glycation results in stiffening of the collagen in the blood vessel walls, leading to high blood pressure. Glycations also cause weakening of the collagen in the blood vessel walls, which may lead to micro- or macro-aneurisms; this may cause strokes if in the brain.
How Do I Protect Myself?
There are a few steps you can take to keep yourself safe from a toxic load of these compounds.
- Keep blood sugar low with a Real Foods diet - This will reduce sugar supplies available for glycation.
- Eat vegetables and fruits raw, boiled, or steamed - When eating raw, there is no formation of these compounds because there is no cooking, while boiling and steaming introduce water to the cooking process.
- Avoid processed carbohydrates and browned foods - Food manufacturers take steps to increase caramelization and browning in their foods, directly increasing the levels of AGEs in the foods.
- Cook meats low and slow - Higher temperatures produce more AGEs than lower temperature, longer cooking times. Rare and medium-rare meats will have fewer AGEs than fully cooked meats, like barbeque or well-done steak.
- In the end, if you’re not eating well-done meats often and are sticking to vegetables, tubers, and fruits for your carbs, you’re unlikely to be taking in dangerous level of AGEs. The body can deal with these substances so long as it isn’t overrun with them.
Subscribe to:
Posts (Atom)